Publication
Title
Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor
Author
Abstract
Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because scaling the supply voltage below 1 V is possible due to the absence of a subthreshold-swing limit of 60 mV/decade. The modeling of the TFET performance, however, is still preliminary. We have developed models allowing a direct comparison between the single-gate, double-gate, and gate-all-around configuration at high drain voltage, when the drain-voltage dependence is negligible, and we provide improved insight in the TFET physics. The dependence of the tunnel current on device parameters is analyzed, in particular, the scaling with gate-dielectric thickness, channel thickness, and dielectric constants of gate dielectric and channel material. We show that scaling the gate-dielectric thickness improves the TFET performance more than scaling the channel thickness and that improvements are often overestimated. There is qualitative agreement between our model and our experimental data.
Language
English
Source (journal)
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
Publication
New York, N.Y. : American Institute of Physics , 2010
ISSN
0021-8979 [print]
1089-7550 [online]
DOI
10.1063/1.3277044
Volume/pages
107 :2 (2010) , p. 024518,1-024518,8
ISI
000274180600122
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 10.06.2011
Last edited 24.02.2023
To cite this reference