Publication
Title
Hyperthermal oxygen interacting with silicon surfaces : adsorption, implantation, and damage creation
Author
Abstract
Using reactive molecular dynamics simulations, we have investigated the effect of single-impact, low-energy (thermal-100 eV) bombardment of a Si(100){2 × 1} surface by atomic and molecular oxygen. Penetration probability distributions, as well as defect formation distributions, are presented as a function of the impact energy for both species. It is found that at low impact energy, defects are created chemically due to the chemisorption process in the top layers of the surface, while at high impact energy, additional defects are created by a knock-on displacement of Si. These results are of particular importance for understanding device performances of silica-based microelectronic and photovoltaic devices.
Language
English
Source (journal)
The journal of physical chemistry: C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
Publication
Washington, D.C. : 2011
ISSN
1932-7447 [print]
1932-7455 [online]
DOI
10.1021/JP112068Z
Volume/pages
115 :15 (2011) , p. 4818-4823
ISI
000288401200060
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 01.07.2011
Last edited 22.01.2024
To cite this reference