The new 5-HT hypothesis of depression : cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Publication type
Oxford ,
Pharmacology. Therapy
Human medicine
Source (journal)
Progress in neuro-psychopharmacology and biological psychiatry. - Oxford
35(2011) :3 , p. 702-721
Target language
English (eng)
Full text (Publishers DOI)
University of Antwerp
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.