Publication
Title
Solving the structure of Li ion battery materials with precession electron diffraction : application to
Author
Abstract
The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Language
English
Source (journal)
Chemistry of materials / American Chemical Society. - Washington, D.C., 1989, currens
Publication
Washington, D.C. : 2011
ISSN
0897-4756 [print]
1520-5002 [online]
DOI
10.1021/CM201257B
Volume/pages
23 :15 (2011) , p. 3540-3545
ISI
000293357100019
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Multiferroics based on the Pb lone pair.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 26.07.2011
Last edited 15.11.2022
To cite this reference