Publication
Title
Optimizing biocontrol using phenological day degree models : the European earwig in pipfruit orchards
Author
Abstract
1 Phenological day degree models are often used as warning systems for the emergence of arthropod pests in agricultural crops or the occurrence of natural enemies of the pest species. In the present study, we report on a case study of the European earwig Forficula auricularia L., which is an important natural enemy in pipfruit orchards, and describe how such a day degree model can be used to avoid negative effects of crucial orchard management, such as spray applications and soil tillage. A precise timing of these interventions in relation to the phenology of natural enemies will enhance biocontrol. 2 Earwig population dynamics are characterized by single- and double-brood populations, each with specific biological characteristics. 3 A day degree model capable of predicting the phenology of local earwig populations of both population types was developed. The model was checked for accuracy by comparing the first field observation dates of various life stages with predicted values using temperature data from the nearest weather station. In addition, variation in development time was assessed using field data. 4 The model was able to make predictions on a global scale. Although single- and double-brood populations differ in phenology, the predictions of first appearance dates were similar. Variation in development time showed that single-brood populations were more synchronized. 5 Our phenological model provides an accurate tool for predicting and simulating earwig population dynamics, as well as for enhancing the biocontrol of pests in pipfruit orchards.
Language
English
Source (journal)
Agricultural and forest entomology. - Oxford
Publication
Oxford : 2011
ISSN
1461-9555
Volume/pages
13:3(2011), p. 301-312
ISI
000292741000008
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 22.08.2011
Last edited 18.10.2017
To cite this reference