Publication
Title
Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach
Author
Abstract
A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electron-phonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the evaluation of the Zener tunneling current under any three-dimensional potential profile. For a one-dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field, and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p-n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model, but a direct numerical treatment is required for low bias conditions.
Language
English
Source (journal)
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
Publication
New York, N.Y. : American Institute of Physics, 2011
ISSN
0021-8979 [print]
1089-7550 [online]
Volume/pages
109:12(2011), p. 124503,1-124503,12
Article Reference
124503
ISI
000292331200134
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 24.08.2011
Last edited 13.10.2017
To cite this reference