Publication
Title
Geometry-driven vortex states in type-I superconducting Pb nanowires
Author
Abstract
Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2011
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.83.224504
Volume/pages
83 :22 (2011) , p. 224504,1-224504,7
Article Reference
224504
ISI
000291888300012
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 31.08.2011
Last edited 15.11.2022
To cite this reference