Publication
Title
Classification with Ant Colony Optimization
Author
Abstract
Ant colony optimization (ACO) can be applied to the data mining field to extract rule-based classifiers. The aim of this paper is twofold. On the one hand, we provide an overview of previous ant-based approaches to the classification task and compare them with state-of-the-art classification techniques, such as C4.5, RIPPER, and support vector machines in a benchmark study. On the other hand, a new ant-based classification technique is proposed, named AntMiner+. The key differences between the proposed AntMiner+ and previous AntMiner versions are the usage of the better performing MAX-MIN ant system, a clearly defined and augmented environment for the ants to walk through, with the inclusion of the class variable to handle multiclass problems, and the ability to include interval rules in the rule list. Furthermore, the commonly encountered problem in ACO of setting system parameters is dealt with in an automated, dynamic manner. Our benchmarking experiments show an AntMiner+ accuracy that is superior to that obtained by the other AntMiner versions, and competitive or better than the results achieved by the compared classification techniques. Index Terms Available to subscribers and IEEE members. References Available to subscribers and IEEE members. Citing Documents Available to subscribers and IEEE members.
Language
English
Source (journal)
IEEE transactions on evolutionary computation / IEEE Neural Networks Council. - New York, N.Y.
Publication
New York, N.Y. : 2007
ISSN
1089-778X
Volume/pages
11:5(2007), p. 651-665
ISI
000249959400007
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 12.09.2011
Last edited 04.11.2017