Title
Analyzing histamine release by flow cytometry (HistaFlow) : a novel instrument to study the degranulation patterns of basophils
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Amsterdam ,
Subject
Chemistry
Biology
Human medicine
Source (journal)
Journal of immunological methods. - Amsterdam
Volume/pages
375(2012) :1/2 , p. 30-38
ISSN
0022-1759
ISI
000300913300005
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Background Stimulated human basophils exhibit different degranulation patterns with release of mediators and appearance of activation markers such as CD63 and CD203c. Traditionally, released mediators are quantified in the supernatant of activated cells, whereas the expression of activation markers by individual cells is analyzed by flow cytometry. Alternatively, intracellular histamine and its release by basophils and mast cells have been repeatedly studied applying an enzyme-affinity-gold method based on the affinity of the histaminase diamine oxidase for its substrate histamine. Objective To develop a flow cytometric technique enabling to study histamine release by individual basophils in combination with the expression of activation markers. To elucidate the principles of basophil degranulation on a single cell level. Methods Intracellular histamine and its release is analyzed flow cytometrically by an enzyme-affinity method using diamine oxidase conjugated to laser-excitable fluorochromes. Phenotyping of cells implied flow cytometric quantification of CD63 and CD203c. Stimuli such as allergen, anti-IgE, N-formyl-met-leu-phe (fMLP), phorbol 12-myristate 13-acetate (PMA), ionomycin and interleukin (IL-)3 are applied to obtain different degranulation profiles. Results Stimulation with anti-IgE, allergen, fMLP and PMA ± ionomycin induces a rapid release of histamine that can be analyzed flow cytometrically. Analyses on a single cell level reveal that histamine release is not restricted to cells showing significant up-regulation of CD63. Alternatively, up-regulation of CD203c does not per se indicate histamine release. In some patients, priming of cells with IL-3 not only facilitates basophil responsiveness but also implies an increased ability of DAO to label the cells. Conclusion This study provides the proof-of-concept that histamine and its release can be studied by multicolor flow cytometry on a single cell level (HistaFlow). Coupling the data to simultaneous phenotyping of activated basophils confirms that histamine release principally results from anaphylactic degranulation and in a lesser extent from piecemeal degranulation.
E-info
https://repository.uantwerpen.be/docman/iruaauth/854885/02e1457.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000300913300005&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000300913300005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000300913300005&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle