Publication
Title
Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum
Author
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology.
Language
English
Source (journal)
Cell cycle. - Place of publication unknown
Publication
Place of publication unknown : 2011
ISSN
1538-4101
Volume/pages
10:11(2011), p. 1810-1820
ISI
000291153800021
Full text (Publishers DOI)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 08.11.2011
Last edited 24.04.2017