Publication
Title
Accurate Monte Carlo modelling of the back compartments of SPECT cameras
Author
Abstract
Today, new single photon emission computed tomography (SPECT) reconstruction techniques rely on accurate Monte Carlo (MC) simulations to optimize reconstructed images. However, existing MC scintillation camera models which usually include an accurate description of the collimator and crystal, lack correct implementation of the gamma camera's back compartments. In the case of dual isotope simultaneous acquisition (DISA), where backscattered photons from the highest energy isotope are detected in the imaging energy window of the second isotope, this approximation may induce simulation errors. Here, we investigate the influence of backscatter compartment modelling on the simulation accuracy of high-energy isotopes. Three models of a scintillation camera were simulated: a simple model (SM), composed only of a collimator and a NaI(Tl) crystal; an intermediate model (IM), adding a simplified description of the backscatter compartments to the previous model and a complete model (CM), accurately simulating the materials and geometries of the camera. The camera models were evaluated with point sources (67Ga, 99mTc, 111In, 123I, 131I and 18F) in air without a collimator, in air with a collimator and in water with a collimator. In the latter case, sensitivities and point-spread functions (PSFs) simulated in the photopeak window with the IM and CM are close to the measured values (error below 10.5%). In the backscatter energy window, however, the IM and CM overestimate the FWHM of the detected PSF by 52% and 23%, respectively, while the SM underestimates it by 34%. The backscatter peak fluence is also overestimated by 20% and 10% with the IM and CM, respectively, whereas it is underestimated by 60% with the SM. The results show that an accurate description of the backscatter compartments is required for SPECT simulations of high-energy isotopes (above 300 keV) when the backscatter energy window is of interest.
Language
English
Source (journal)
Physics in medicine & biology. - London
Publication
London : 2011
ISSN
0031-9155
Volume/pages
56:1(2011), p. 87-104
ISI
000285136400009
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 14.11.2011
Last edited 08.08.2017