Publication
Title
Automated identification of ERP peaks through Dynamic Time Warping : an application to developmental dyslexia
Author
Abstract
Objective This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. Methods We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. Results We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. Conclusion We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. Significance The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest.
Language
English
Source (journal)
Clinical neurophysiology. - Amsterdam
Publication
Amsterdam : 2009
ISSN
1388-2457
Volume/pages
120:10(2009), p. 1819-1827
ISI
000272018900011
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 14.11.2011
Last edited 23.11.2017