Publication
Title
**In vitro** selection and characterization of DNA aptamers recognizing chloramphenicol
Author
Abstract
Chloramphenicol (Cam), although an effective antibiotic, has lost favour due to some fatal side effects. Thus there is an urgent need for rapid and sensitive methods to detect residues in food, feed and environment. We engineered DNA aptamers that recognize Cam as their target, by conducting in vitro selections. Aptamers are nucleic acid recognition elements that are highly specific and sensitive towards their targets and can be synthetically produced in an animal-friendly manner, making them ethical innovative alternatives to antibodies. None of the isolated aptamers in this study shared sequence homology or structural similarities with each other, indicating that specific Cam recognition could be achieved by various DNA sequences under the selection conditions used. Analyzing the binding affinities of the sequences, demonstrated that dissociation constants (Kd) in the extremely low micromolar range, which were lower than those previously reported for Cam-specific RNA aptamers, were achieved. The two best aptamers had G rich (>35%) nucleotide regions, an attribute distinguishing them from the rest and apparently responsible for their high selectivity and affinity (Kd ∼ 0.8 and 1 μM respectively). These aptamers open up possibilities to allow easy detection of Cam via aptamer-based biosensors.
Language
English
Source (journal)
Journal of biotechnology. - Amsterdam
Publication
Amsterdam : 2011
ISSN
0168-1656
DOI
10.1016/J.JBIOTEC.2011.06.043
Volume/pages
155 :4 (2011) , p. 361-369
ISI
000294488900001
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 16.11.2011
Last edited 15.11.2022
To cite this reference