Publication
Title
Supersymmetry and dark matter in light of LHC 2010 and XENON100 data
Author
Abstract
We make frequentist analyses of the CMSSM, NUHM1, VCMSSM and mSUGRA parameter spaces taking into account all the public results of searches for supersymmetry using data from the 2010 LHC run and the XENON100 direct search for dark matter scattering. The LHC data set includes ATLAS and CMS searches for $\mathrm{jets} + {\not}E_{T}$ events (with or without leptons) and for the heavier MSSM Higgs bosons, and the upper limit on BR(B s →μ + μ −) including data from LHCb as well as CDF and DØ. The absence of signals in the LHC data favours somewhat heavier mass spectra than in our previous analyses of the CMSSM, NUHM1 and VCMSSM, and somewhat smaller dark matter scattering cross sections, all close to or within the pre-LHC 68% CL ranges, but does not impact significantly the favoured regions of the mSUGRA parameter space. We also discuss the impact of the XENON100 constraint on spin-independent dark matter scattering, stressing the importance of taking into account the uncertainty in the π-nucleon σ term Σ πN, which affects the spin-independent scattering matrix element, and we make predictions for spin-dependent dark matter scattering. Finally, we discuss briefly the potential impact of the updated predictions for sparticle masses in the CMSSM, NUHM1, VCMSSM and mSUGRA on future e + e − colliders.
Language
English
Source (journal)
European physical journal : C : particles and fields. - Berlin
Publication
Berlin : 2011
ISSN
1434-6044
Volume/pages
71:8(2011), p. 1722,1-1722,22
Article Reference
1722
ISI
000294476700020
Medium
E-only publicatie
Full text (Publishers DOI)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 25.11.2011
Last edited 14.04.2017
To cite this reference