The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (**Carassius auratus** L.)
This study aimed to elucidate the physiological effects of high environmental ammonia (HEA) following periods of feeding (2% body weight) and starvation (unfed for 7 days prior to sampling) in gold fish (Carassius auratus). Both groups of fish were exposed to HEA (1 mg/L; Flemish water quality guideline) for 0 h (control), 3 h, 12 h, 1 day, 4 days, 10 days, 21 days and 28 days. Measurements of weight gain (%), oxygen consumption (MO2), ammonia excretion rate, ammonia quotient (AQ), critical swimming speeds (Ucrit), plasma and muscle ammonia accumulation, plasma lactate, liver and muscle glycogen, lipid and protein content were done at various time intervals during the experimental periods. Overall, ammonia excretion rates, plasma ammonia accumulation and AQ were significantly affected by food regime in ammonia free water. HEA, the additional challenge in the present study, significantly altered all the studied parameters among fed and starved groups in days-dependent manner. Results show that weight gain (%), MO2, Ucrit, protein content in liver and muscle, and glycogen content in muscle among starved fish under HEA were considerably reduced compared to control and fed fish. Additionally a remarkable increase in plasma ammonia level, muscle ammonia, lactate accumulation and AQ was seen. However in fed fish, MO2, ammonia excretion rate, AQ and lactate level augmented after exposure to HEA. These results indicate that starved fish appeared more sensitive to HEA than fed fish. Furthermore, as expected, the toxic effect of ammonia exposure in both feeding treatments was exacerbated when imposed to exhaustive swimming (swum at 3/4thUcrit). Such effects were more pronounced in starved fish. This suggests that starvation can instigate fish more vulnerable to external ammonia during exercise. Therefore, it was evident from our study that feeding ameliorates ammonia handling and reduces its toxicity during both routine and exhaustive swimming. Moreover, recovery was observed for some physiological parameters (e.g. MO2, ammonia excretion, Ucrit, plasma ammonia) during the last exposure periods (2128 days) while for others (e.g. growth, tissue glycogen and protein content, muscle ammonia) effects only became apparent at this time. In the future, these results need to be considered in ecological context as fish in ammonia polluted may experience different phenomenon (starvation and exercise) simultaneously.
Source (journal)
Aquatic toxicology. - Amsterdam
Aquatic toxicology. - Amsterdam
Amsterdam : 2012
109 (2012) , p. 33-46
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
Research group
Project info
Comparative Fish Physiology: Putting Feeding into the Picture.
Publication type
Publications with a UAntwerp address
External links
Web of Science
Creation 05.01.2012
Last edited 12.12.2021
To cite this reference