Publication
Title
Robust edge-directed interpolation of magnetic resonance images
Author
Abstract
Image interpolation is intrinsically a severely under-determined inverse problem. Traditional non-adaptive interpolation methods do not account for local image statistics around the edges of image structures. In practice, this results in artifacts such as jagged edges, blurring and/or edge halos. To overcome this shortcoming, edge-directed interpolation has been introduced in different forms. One variant, new edge-directed interpolation (NEDI), has successfully exploited the 'geometric duality' that links the low-resolution image to its corresponding high-resolution image. It has been demonstrated that for scalar images, NEDI is able to produce better results than non-adaptive traditional methods, both visually and quantitatively. In this work, we return to the root of NEDI as a least-squares estimation method of neighborhood patterns and propose a robust scheme to improve it. The improvement is twofold: firstly, a robust least-squares technique is used to improve NEDI's performance to outliers and noise; secondly, the NEDI algorithm is extended with the recently proposed non-local mean estimation scheme. Moreover, the edge-directed concept is applied to the interpolation of multi-valued diffusion-weighted images. The framework is tested on phantom scalar images and real diffusion images, and is shown to achieve better results than the non-adaptive methods as well as NEDI, in terms of visual quality as well as quantitative measures.
Language
English
Source (journal)
Physics in medicine & biology. - London
Publication
London : 2011
ISSN
0031-9155
Volume/pages
56:22(2011), p. 7287-7303
ISI
000296768700022
Full text (Publishers DOI)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 24.01.2012
Last edited 23.05.2017
To cite this reference