Publication
Title
Fatigue resistance of dentin/composite interfaces with an additional intermediate elastic layer
Author
Abstract
According to the elastic bonding concept, a thick intermediate layer of flexible resin has been suggested to absorb part of the polymerization shrinkage stress and to absorb shocks during function. In this study, the effect of an additional intermediate layer of a low-viscosity resin on the microrotary fatigue resistance (µRFR) of a hybrid composite bonded to dentin was evaluated. The hypotheses tested were that an intermediate layer of a low-viscosity resin (i) increases the µRFR to dentin, but (ii) has no effect on the static bond strength. Microtensile bond strength (µTBS) samples were loaded until failure or inserted in a microrotary fatigue testing device. Specimens were tested at 4 Hz until failure or until 105 cycles were reached. An additional intermediate elastic layer had no effect on the static µTBS, but significantly lowered the median µRFR from 28.4 MPa to 21.6 MPa. However, the application of an intermediate flexible layer had, no effect on the static µTBS. In conclusion, an additional elastic intermediate layer did decrease significantly the µRFR (rejection of hypothesis i), but did not alter the µTBS (acceptance of hypothesis ii). The decrease in µRFR most likely may be explained by the lower mechanical properties of the intermediary layer.
Language
English
Source (journal)
European journal of oral sciences. - Copenhagen
Publication
Copenhagen : 2005
ISSN
0909-8836
Volume/pages
113:1(2005), p. 77-82
ISI
000226794800012
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 31.01.2012
Last edited 06.08.2017
To cite this reference