Publication
Title
Many-polaron description of impurities in a Bose-Einstein condensate in the weak-coupling regime
Author
Abstract
The weak-coupling many-polaron formalism is applied to the case of the polaronic system consisting of impurities in a Bose-Einstein condensate. This allows investigating the ground-state properties and the response of the system to Bragg spectroscopy. Then, this theory is applied to the system of spin-polarized fermionic lithium-6 impurities in a sodium condensate. The Bragg spectrum reveals a peak that corresponds to the emission of Bogoliubov excitations. Both the ground-state properties and the response spectrum show that the polaronic effect vanishes at high densities. We also look at two possibilities to define the polaronic effective mass and observe that this results in a different quantitative behavior if multiple impurities are involved.
Language
English
Source (journal)
Physical review : A : atomic, molecular and optical physics. - Lancaster, Pa, 1990 - 2015
Publication
Lancaster, Pa : 2011
ISSN
1094-1622 [online]
1050-2947 [print]
DOI
10.1103/PHYSREVA.84.063612
Volume/pages
84 :6 (2011) , p. 063612,1-063612,7
Article Reference
063612
ISI
000297931500006
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 01.02.2012
Last edited 04.03.2024
To cite this reference