Title
On the path integral representation of the Wigner function and the BarkerMurray ansatz On the path integral representation of the Wigner function and the BarkerMurray ansatz
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Amsterdam ,
Subject
Physics
Source (journal)
Physics letters: A. - Amsterdam, 1967, currens
Volume/pages
376(2012) :6/7 , p. 809-812
ISSN
0375-9601
ISI
000301167300005
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The propagator of the Wigner function is constructed from the WignerLiouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) [1], we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation.
E-info
https://repository.uantwerpen.be/docman/iruaauth/4615b6/abead1c9f7a.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301167300005&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301167300005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301167300005&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle