Publication
Title
Dipeptidyl peptidase IV (DPPIV/CD26) inhibition does not improve engraftment of unfractionated syngeneic or allogeneic bone marrow after nonmyeloablative conditioning
Author
Abstract
In order to develop minimally toxic bone marrow transplantation (BMT) protocols suitable for use in a wider range of indications, it is important to identify ways to enhance BM engraftment at a given level of recipient conditioning. CXCL12/stromal cell-derived factor-1α plays a crucial physiological role in homing of hematopoietic stem cells to BM. It is regulated by the ectopeptidase dipeptidyl peptidase IV (DPPIV; DPP4) known as CD26, which cleaves dipeptides from the N-terminus of polypeptide chains. Blocking DPPIV enzymatic activity had a beneficial effect on hematopoietic stem cell engraftment in various but very specific experimental settings. Here we investigated whether inhibition of DPPIV enzymatic activity through Diprotin A or sitagliptin (Januvia) improves BM engraftment in nonmyeloablative murine models of syngeneic (i.e., CD45-congenic) and allogeneic (i.e., Balb/c to B6) BMT (1 Gy total body irradiation, 1015 × 106 unseparated BM cells/mouse). Neither Diprotin A administered in vivo at the time of BMT and/or used for in vitro pretreatment of BM nor sitagliptin administered in vivo had a detectable effect on the level of multilineage chimerism (follow-up >20 weeks). Similarly, sitagliptin did not enhance chimerism after allogeneic BMT, even though DPPIV enzymatic activity measured in serum was profoundly inhibited (>98% inhibition at peak exposure). Our results provide evidence that DPPIV inhibition via Diprotin A or sitagliptin does not improve engraftment of unseparated BM in a nonmyeloablative BMT setting.
Language
English
Source (journal)
Experimental hematology. - Oak Ridge, Tenn., 1973, currens
Publication
Oak Ridge, Tenn. : 2012
ISSN
0301-472X
1873-2399 [online]
DOI
10.1016/J.EXPHEM.2011.10.010
Volume/pages
40 :2 (2012) , p. 97-106
ISI
000299586200002
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Dipeptidyl peptidases beyond glucose homeostasis: from biochemistry to physiological importance.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 13.02.2012
Last edited 28.01.2024
To cite this reference