Publication
Title
Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments
Author
Abstract
A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Spectrochimica acta: part B: atomic spectroscopy. - Oxford, 1967, currens
Publication
Oxford : 2004
ISSN
0584-8547
0038-6987
Volume/pages
59:10-11(2004), p. 1747-1754
ISI
000224848000035
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 24.02.2012
Last edited 07.08.2017
To cite this reference