Publication
Title
Evidence of oxygen-dependent modulation in
Author
Abstract
A polycrystalline sample of LuFe2O4 has been investigated by means of powder synchrotron x-ray and neutron diffraction and transmission electron microscopy (TEM), along with Mössbauer spectroscopy and transport and magnetic properties. A monoclinic distortion is unambiguously evidenced, and the crystal structure is refined in the monoclinic C2/m space group [aM = 5.9563(1) Å, bM = 3.4372(1) Å, cM = 8.6431(1) Å, β = 103.24(1)°]. Along with the previously reported modulations distinctive of the charge-ordering (CO) of the iron species, a new type of incommensurate order is observed, characterized by a vector q⃗1 = α1a⃗M* + γ1c⃗M* (with α1 ≅ 0.55, γ1 ≅ 0.13). In situ heating TEM observations from 300 to 773 K confirm that the satellites associated with q⃗1 vanish completely, only at a temperature significantly higher than the CO temperature. This incommensurate modulation has a displacive character and corresponds primarily to a transverse displacive modulation wave of the Lu cations position, as revealed by the high resolution, high angle annular dark field scanning TEM images and in agreement with synchrotron data refinements. Analyses of vacuum-annealed samples converge toward the hypothesis of a new ordering mechanism, associated with a tiny oxygen deviation from the O4 stoichiometry.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2012
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.85.064102
Volume/pages
85 :6 (2012) , p. 064102,1-064120,10
Article Reference
064102
ISI
000299896900003
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Counting Atoms in Nanomaterials (COUNTATOMS).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 29.02.2012
Last edited 09.10.2023
To cite this reference