Publication
Title
Non-local kinetic energy functional for an arbitrary number of Fermions moving independently in one-dimensional harmonic oscillator potential
Author
Abstract
For one-dimensional Fermions bound by a general one-body potential V(x), the Pauli potential is first related to the kinetic energy and the particle density rho(x). For the model of the harmonic oscillator, V(x) = 1/2x(2), this equation leads to a non-local kinetic energy functional in which only first-order derivatives of rho(x) enter. This example shows the usefulness of a new concept, the Pauli function, which encompasses the Pauli principle in terms of the electronic density. For the harmonic oscillator model, the kinetic energy can then be expressed exactly in terms of the Thomas-Fermi kinetic energy functional, together with the von Weizsacker inhomogeneity term, but now in a fully non-local way. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Language
English
Source (journal)
Physics letters: A. - Amsterdam, 1967, currens
Publication
Amsterdam : 2000
ISSN
0375-9601
Volume/pages
270:1-2(2000), p. 88-92
ISI
000087265200011
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 29.02.2012
Last edited 01.08.2017
To cite this reference