Publication
Title
A synchrotron radiation microtomography system for the analysis of trabecular bone samples
Author
Abstract
X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (mu CT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 mu m, and the experimental spatial resolution was found to be 11 mu m. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D mu CT images. First results on human trabecular bone samples are presented. (C) 1999 American Association of Physicists in Medicine. [S0094-2405(99)01610-7].
Language
English
Source (journal)
Medical physics. - New York, N.Y.
Publication
New York, N.Y. : 1999
ISSN
0094-2405 [print]
2473-4209 [online]
DOI
10.1118/1.598736
Volume/pages
26 :10 , p. 2194-2204
ISI
000083202300018
Full text (Publisher's DOI)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 29.02.2012
Last edited 23.08.2022