Title
Kinetics of the surface tension of micellar solutions: Comparison of different experimental techniques Kinetics of the surface tension of micellar solutions: Comparison of different experimental techniques
Author
Publication type
article
Publication
Darmstadt ,
Subject
Chemistry
Source (journal)
Colloid and polymer science. - Darmstadt
Volume/pages
274() :4 , p. 356-367
ISSN
0303-402X
ISI
A1996UG55500007
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
The kinetics of the surface tension of micellar solutions of nonionic surfactant Triton X-100 is measured experimentally by means of three different techniques: oscillating jet, maximum bubble pressure and inclined plate. They allow to study the micellization kinetics at various time scales (from a few milliseconds to a few seconds) in fairly large concentration region up to 50 times CMC. The experimental data are satisfactorily explained by a theoretical model accounting for the kinetics of micellization, diffusion of surfactant species and expansion of the bubble interface. By this model are computed the characteristic times of diffusion and micellization, which are of comparable magnitude (about 5 to 200 ms), and the Gibbs' elasticity. The micellization time constant corresponds to the slow relaxation process known to coincide with the disintegration of micelles. Comparing our data with other data from literature one can conclude that more realistic information for the micellization kinetics is obtained by the maximum bubble pressure and the oscillating jet method. The inclined plate seems too slow to measure the relaxation processes in micellar solutions of this surfactant.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1996UG55500007&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1996UG55500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1996UG55500007&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848