Publication
Title
The purification, characterization and analysis of primary and secondary-structure of prolyl oligopeptidase from human-lymphocytes - evidence that the enzyme belongs to the alpha/beta hydrolase fold family
Author
Abstract
Prolyl oligopeptidase was isolated and purified to homogeneity from human lymphocytes, yielding a specific activity of 7780 mU/mg. The molecular mass using size-exclusion chromatography matches the 76 kDa obtained by SDS/PAGE. This provides evidence that prolyl oligopeptidase is a monomer. The isoelectric point is 4.8 as judged by isoelectric focusing in free solution. Di-isopropyl fluorophosphate and phenylmethylsulphonyl fluoride completely abolish the activity, classifying the enzyme as a serine proteinase. The inhibition by p-chloromercuribenzoic acid indicates the importance of a free sulfhydryl group near the active-site. alpha(1)-Casein and ornithine decarboxylase, two proteins containing a PEST sequence, inhibit prolyl oligopeptidase, but were not hydrolyzed. This demonstrates that prolyl oligopeptidase is not participating in the metabolism of proteins according to a PEST-dependent pathway. alpha(1)-Antitrypsin partially inhibits the enzyme but in contrast, aprotinin does not. Its inability to cleave corticotropin-releasing factor, ubiquitin, albumin and aprotinin, together with the hydrolysis of bradykinin between Pro7-Arg8 confirms the affinity of prolyl oligopeptidase for small peptides. Multiple sequence alignment does not reveal any similarity with proteases of known tertiary structure. Secondary-structure prediction displays striking similarity with dipeptidyl peptidase IV and acylaminoacyl peptidase. Two characteristic features of the members of the prolyl oligopeptidase family of serine proteases are highlighted: the linear arrangement of the catalytic triad is nucleophile-acid-base and the proteolytic cleavage releasing the catalytically active C-terminal region of around 500 amino acids from the N-terminal sequence. Secondary structure prediction and comparison of the active-site of serine proteinases with known three-dimensional coordinates prove that Asp641 is the third member of the catalytic triad. The secondary structural organization of the protease domain of prolyl oligopeptidase is in accordance with the alpha/beta hydrolase fold.
Language
English
Source (journal)
European journal of biochemistry. - Berlin
Publication
Berlin : 1995
ISSN
0014-2956
Volume/pages
233:2(1995), p. 432-441
ISI
A1995TB20700006
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 29.02.2012
Last edited 03.10.2017