Publication
Title
Reaction norms and the genetic-basis of phenotypic plasticity in the wing pattern of the butterfly bicyclus-anynana
Author
Abstract
The genetic basis of the dry-wet season polyphenism of wing pattern in response to temperature shown by Bicyclus anynana was studied, using a split-family design over four temperatures. Reaction norms crossed, but were only linear in the three highest temperatures, and only when larval development time was used as the environmental axis. Significant full-sib additive variances (V(A)) and heritabilities (h2) for plasticity were found using slopes of reaction norms in a bootstrap procedure. Heritabilities were lower in intermediate temperatures, mainly due to differences in the residual variances (V(R)). There was no clear trend in V(A) across temperatures, contrary to the expectation that V(A) would have been depleted by natural selection at the extreme temperatures and not depleted at the intermediate temperatures which occur less frequently in the field. Unpredictability in the onset of the following season at intermediate temperatures might lead to selection for diverse flresponses resulting in relatively high V(R)S. Theoretical models linking reaction norms to genetic parameters in separate environments were difficult to apply in this study, particularly because they are based on the assumption that V(R)S are constant. However the reaction norm approach combined with quantitative genetics provided a valuable insight into the evolution of the observed polyphenism.
Language
English
Source (journal)
Journal of evolutionary biology. - Basel
Publication
Basel : 1994
ISSN
1010-061X
Volume/pages
7:6(1994), p. 665-695
ISI
A1994PV78800002
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 29.02.2012
Last edited 20.08.2017
To cite this reference