Publication
Title
Pointwise bornological vector spaces
Author
Abstract
The existing duality between topological and homological vector spaces allows us to define homological objects in the category of topological vector spaces For a Tychonoff space X and a set B of relatively pseudocompact subsets of X. the vector space C(X) endowed with the topology of uniform convergence on elements of B is a locally convex topological vector space, the homological coreflection of which is described in [J Schmets, Espaces de Fonctions Continues, Lecture Notes in Math. vol 519, Springer-Verlag, Berlin, Heidelberg, New York. 1976, J Schmets, Spaces of Vector-Valued Functions, Lecture Notes in Math. vol 1003. Springer-Verlag, Berlin. Heidelberg. New York, 1983, J Dontchev, S Salbany, V Valov. Barrelled and homological function spaces. J Math Anal Appl 242 (2000) 117, J Schmets, Spaces of vector-valued continuous functions, in Proceedings Vector Space Measures and Applications I, Dublin, 1977. in Lecture Notes in Math, vol 644, Springer-Verlag, Berlin. Heidelberg. New York. 1978, pp 368-377, J Schmets, Bornological and ultrabornological C(X E) spaces, Manuscripta Math 21 (1977) 117-133] If the elements of B are not supposed to he relatively pseudocompact, then this topology is no longer a vector topology and the bounded sets do not form a homology. so the classical theory on bornologicity cannot be applied to it The aim of this paper is to extend the duality between topological and homological vector spaces to larger classes of objects and, moreover, apply it to C(X) endowed with three different, natural topologies (C) 2009 Elsevier B V All rights reserved
Language
English
Source (journal)
Topology and its applications. - Amsterdam
Source (book)
Conference on Advances in Set-Theoretic Topology held in honor of, Tsugunori Nogura on his 60th Birthday, June 09-19, 2008-2009, Erice, ITALY
Publication
Amsterdam : Elsevier Science, 2010
ISSN
0166-8641
Volume/pages
157:8(2010), p. 1558-1568
ISI
000277677500031
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 01.03.2012
Last edited 18.10.2017
To cite this reference