From inductive inference to the fundamental equation of measurement
Faculty of Sciences. Physics

conferenceObject

Cambridge :Perseus, 2000
[*]
2000

Mathematics

2nd International Conference on Complex Systems, Oct; 25-30, 1998, New England Complex Syst nst., Nashua, N.H.

0-7382-0049-2

000086160100012

E

English (eng)

University of Antwerp

By considering inductive inference of the viewpoint of a gradual inclusion of information, instead of forecasting a given sequence, it will be shown that conditional algorithmic complexity decreases during learning. Based on a theorem of Levin, conditional algorithmic complexity and mutual algorithmic complexity are shown to be approximated by conditional entropy and mutual information, respectively. Furthermore, physical randomness and physical complexity are shown to be given by conditional algorithmic complexity and mutual algorithmic complexity, hence sum up to algorithmic complexity. A relation between computation and measurement will be suggested.

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000086160100012&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000086160100012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848