Title
Backlund transformations and Painleve analysis : exact soliton solutions for the unstable nonlinear Schrodinger equation modeling electron beam plasmaBacklund transformations and Painleve analysis : exact soliton solutions for the unstable nonlinear Schrodinger equation modeling electron beam plasma
Author
Faculty/Department
Faculty of Sciences. Physics
Research group
Department of Physics
Non-linear Waves
Publication type
article
Publication
Woodbury, N.Y.,
Subject
Physics
Source (journal)
Physics of plasmas. - Woodbury, N.Y.
Volume/pages
5(1998):2, p. 395-400
ISSN
1070-664X
ISI
000071834300009
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
In this paper the Backlund transformations technique and Painleve analysis are used to generate classes of exact soliton solutions for some nonlinear evolution equations. For the (1+1)-dimensional problem, the unstable system of plasma equations where an electron beam is injected under a high-frequency electric field is reduced to the unstable nonlinear Schrodinger (UNLS) equation. Using the Darboux-Bargmann technique, we obtain the Backlund transformations for UNLS equation solvable by the inverse scattering method of Zakharov-Shabat/Ablowitz-Kaup-Newell-Segur (ZS/AKNS) and the ZS/AKNS wave functions corresponding to the soliton solutions of this equation. (C) 1998 American Institute of Physics.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000071834300009&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000071834300009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000071834300009&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle