Publication
Title
Real-time geometric lens distortion correction using a graphics processing unit
Author
Abstract
Optical imaging systems often suffer from distortion artifacts which impose important limitations on the direct interpretation of the images. It is possible to correct for these aberrations through image processing, but due to their calculation-intensive nature, the required corrections are typically performed offline. However, with image-based applications that operate interactively, real-time correction of geometric distortion artifacts can be vital. We propose a new method to generate undistorted images by implementing the required distortion correction algorithm on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. The proposed technique is not limited to affine lens distortions but allows for the correction of arbitrary geometric image distortion artifacts through individual pixel resampling at display rates of more than 30 frames per second for fully processed images (1024×768  pixels). Our method enables real-time GPU-based geometric lens distortion correction without the need for additional digital image processing hardware.
Language
English
Source (journal)
Optical engineering / Society of Photo-Optical Instrumentation Engineers. - Bellingham, Wash.
Publication
Bellingham, Wash. : 2012
ISSN
0091-3286
DOI
10.1117/1.OE.51.2.027002
Volume/pages
51 :2 (2012) , p. 027002,1-027002,5
Article Reference
027002
ISI
000302779500041
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.03.2012
Last edited 09.10.2023
To cite this reference