Title
Towards integrated sustainability assessment for energetic use of biomass : a state of the art evaluation of assessment tools
Author
Faculty/Department
Faculty of Sciences. Bioscience Engineering
Publication type
article
Publication
Oxford :Elsevier Science ,
Subject
Physics
Biology
Engineering sciences. Technology
Source (journal)
Renewal and sustainable energy reviews. - Oxford, 1997, currens
Volume/pages
15(2011) :8 , p. 3918-3933
ISSN
1364-0321
ISI
000298764100043
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Biomass is expected to play an increasingly significant role in the greening of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
E-info
https://repository.uantwerpen.be/docman/iruaauth/a2c3d7/90fb3b6b0a7.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000298764100043&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000298764100043&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000298764100043&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle