Publication
Title
Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations
Author
Abstract
We use the GalaxiesIntergalactic Medium Interaction Calculation (GIMIC) suite of cosmological hydrodynamical simulations to study the global structure and kinematics of stellar spheroids of Milky Way mass disc galaxies. Font et al. have recently demonstrated that these simulations are able to successfully reproduce the satellite luminosity functions and the metallicity and surface brightness profiles of the spheroids of the Milky Way and M31. A key to the success of the simulations is a significant contribution to the spheroid from stars that formed in situ. While the outer halo is dominated by accreted stars, stars formed in the main progenitor of the galaxy dominate at r? 30 kpc. In the present study, we show that this component was primarily formed in a protodisc at high redshift and was subsequently liberated from the disc by dynamical heating associated with mass accretion. As a consequence of its origin, the in situ component of the spheroid has different kinematics (namely net prograde rotation with respect to the disc) than that of the spheroid component built from the disruption of satellites. In addition, the in situ component has a flattened distribution, which is due in part to its rotation. We make comparisons with measurements of the shape and kinematics of local galaxies, including the Milky Way and M31, and stacked observations of more distant galaxies. We find that the simulated disc galaxies have spheroids of the correct shape (oblate with a median axial ratio of similar to 0.6 at radii of ?30 kpc, but note there is significant system-to-system scatter in this quantity) and that the kinematics show evidence for two components (due to in situ versus accreted), as observed. Our findings therefore add considerable weight to the importance of dissipative processes in the formation of stellar haloes and to the notion of a dual stellar halo.
Language
English
Source (journal)
Monthly notices of the Royal Astronomical Society. - Oxford
Publication
Oxford : 2012
ISSN
0035-8711
Volume/pages
420:3(2012), p. 2245-2262
ISI
000300702200030
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 18.04.2012
Last edited 07.07.2017
To cite this reference