Publication
Title
Introducing measure-by-wire, the systematic use of systems and control theory in transmission electron microscopy
Author
Abstract
Transmission electron microscopes (TEMs) are the tools of choice for academic and industrial research at the nano-scale. Due to their increasing use for routine, repetitive measurement tasks (e.g., quality control in production lines) there is a clear need for a new generation of high-throughput microscopes designed to autonomously extract information from specimens (e.g., particle size distribution, chemical composition, structural information, etc.). To aid in their development, a new engineering perspective on TEM design, based on principles from systems and control theory, is proposed here: measure-by-wire (not to be confused with remote microscopy). Under this perspective, the TEM operator yields the direct control of the microscope's internal processes to a hierarchy of feedback controllers and high-level supervisors. These make use of dynamical models of the main TEM components together with currently available measurement techniques to automate processes such as defocus correction or specimen displacement. Measure-by-wire is discussed in depth, and its methodology is illustrated through a detailed example: the design of a defocus regulator, a type of feedback controller that is akin to existing autofocus procedures. (C) 2011 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Ultramicroscopy. - Amsterdam
Publication
Amsterdam : 2011
ISSN
0304-3991
Volume/pages
111:11(2011), p. 1581-1591
ISI
000300461400009
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 18.04.2012
Last edited 14.06.2017
To cite this reference