Publication
Title
Persistent misconceptions about incoherence in electron microscopy
Author
Abstract
Incoherence in electron microscopic imaging occurs when during the observation the microscope and the object are subject to fluctuations. In order to speed up the computer simulation of the images, approximations are used that are considered as valid. In this paper we will question the validity of these approximations and show that in specific cases they can lead to erroneous results. It is shown in particular in the case of one single vibrating atom that the thermal diffuse scattering that causes the signal in HAADF STEM is not only dependent on Z but also on the mean square displacement of the atom so that it can even be large for light atoms in soft matter, provided the right HAADF aperture is used. In HREM imaging the diffuse scattering leaks out of the coherent (elastic) wave and is redistributed in the background. This might explain the mismatch in elastic contrast (Stobbs factor) especially for crystals with a thickness beyond the extinction distance, where also the HAADF signal saturates and the elastic (coherent) component vanishes. (C) 2011 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Ultramicroscopy. - Amsterdam
Publication
Amsterdam : 2011
ISSN
0304-3991
DOI
10.1016/J.ULTRAMIC.2011.01.007
Volume/pages
111 :7 (2011) , p. 894-900
ISI
000300461000022
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 18.04.2012
Last edited 09.10.2023
To cite this reference