Publication
Title
Laser vibrometry for measurement of non-linear distortions in the vibration of weakly non-linear slowly time-varying systems
Author
Abstract
Recently, a new signal analysis method was developed to detect small non-linear distortions in weakly non-linear systems using specially designed broadband excitation signals, i.e. odd random phase multisines. The method allows the detection and quantification of the system response, noise level and both odd and even degree non-linear distortions over an extensive frequency range from one single short-term measurement. Here, this method is implemented in an opto-acoustical set-up to detect small non-linearities in the response of vibrating structures. Because of the highly linear response achievable with heterodyne vibrometry, it is possible to detect non-linearities in the system under test with extremely high sensitivity. Non-linear behaviour is very common in biomechanical systems, but their dynamics and thus response might change over time. This leads to measurement artifacts that cause an overestimation of the noise level. A correction algorithm can be applied to remove the effect of these time variations, so that heterodyne vibrometry also allows the detection and quantification of non-linearities in unstable biomechanical systems. In this paper the technique is demonstrated with a measurement of the non-linear distortions in the vibration of the gerbil middle ear, where the use of a non-contact optical detection method is essential to not disturb the tiny vibrating structures.
Language
English
Source (journal)
Proceedings of the Society of Photo-optical Instrumentation Engineers / SPIE: International Society for Optical Engineering. - Bellingham, Wash.
Source (book)
Proceedings of the 22nd Congress of the International Commission for Optics : Light for the Development of the World, August 15-19, 2011, Puebla, Mexico
Publication
Bellingham : SPIE , 2011
ISSN
0277-786X
ISBN
978-0-8194-8585-4
DOI
10.1117/12.902073
Volume/pages
p. 80118M,1-80118M,8
Article Reference
80118M
ISI
000297585800310
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 18.04.2012
Last edited 09.10.2023
To cite this reference