Title
I-optimal versus D-optimal split-plot response surface designs I-optimal versus D-optimal split-plot response surface designs
Author
Faculty/Department
Faculty of Applied Economics
Publication type
article
Publication
Milwaukee, Wis. ,
Subject
Economics
Mathematics
Source (journal)
Journal of quality technology. - Milwaukee, Wis.
Volume/pages
44(2012) :2 , p. 85-101
ISSN
0022-4065
ISI
000302045300001
Carrier
E
Target language
English (eng)
Affiliation
University of Antwerp
Abstract
Response surface experiments often involve only quantitative factors, and the response is fit using a full quadratic model in these factors. The term response surface implies that interest in these studies is more on prediction than parameter estimation because the points on the fitted surface are predicted responses. When computing optimal designs for response surface experiments, it therefore makes sense to focus attention on the predictive capability of the designs. However, the most popular criterion for creating optimal experimental designs is the D-optimality criterion, which aims to minimize the variance of the factor e↵ect estimates in an omnibus sense. Because I-optimal designs minimize the average variance of prediction over the region of experimentation, their focus is clearly on prediction. Therefore, the Ioptimality criterion seems to be a more appropriate one than the D-optimality criterion for generating response surface designs. Here we introduce I-optimal design of split-plot response surface experiments. We show through several examples that I-optimal split-plot designs provide substantial benefits in terms of improved prediction compared with D-optimal split-plot designs, while also performing very well in terms of the precision of the factor e↵ect estimates.
E-info
https://repository.uantwerpen.be/docman/iruaauth/0f126f/13c7bb36c97.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302045300001&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302045300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302045300001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle