Title
High-throughput detection, genotyping and quantification of the human papillomavirus using real-time PCR High-throughput detection, genotyping and quantification of the human papillomavirus using real-time PCR
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Faculty of Medicine and Health Sciences
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences . Biomedical Sciences
Publication type
article
Publication
Berlin ,
Subject
Chemistry
Human medicine
Source (journal)
Clinical chemistry and laboratory medicine. - Berlin
Volume/pages
50(2012) :4 , p. 655-661
ISSN
1434-6621
ISI
000304337100009
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Background: The establishment of the causal relationship between high-risk human papillomavirus (HR-HPV) infection and cervical cancer and its precursors has resulted in the development of HPV DNA detection systems. Currently, real-time PCR assays for the detection of HPV, such as the RealTime High Risk (HR) HPV assay (Abbott) and the cobas® 4800 HPV Test (Roche Molecular Diagnostics) are commercially available. However, none of them enables the detection and typing of all HR-HPV types in a clinical high-throughput setting. This paper describes the laboratory workflow and the validation of a type-specific real-time quantitative PCR (qPCR) assay for high-throughput HPV detection, genotyping and quantification. This assay is routinely applied in a liquid-based cytology screening setting (700 samples in 24 h) and was used in many epidemiological and clinical studies. Methods: The TaqMan-based qPCR assay enables the detection of 17 HPV genotypes and β-globin in seven multiplex reactions. These HPV types include all 12 high-risk types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59), three probably high-risk types (HPV53, 66 and 68), one low-risk type (HPV6) and one undetermined risk type (HPV67). Results: An analytical sensitivity of ≤100 copies was obtained for all the HPV types. The analytical specificity of each primer pair was 100% and an intra- and inter-run variability of <6.4% was observed. Conclusions: The type-specific real-time PCR approach enables detection of 17 HPV types, identification of the HPV type and determination of the viral load in a single sensitive assay suitable for high-throughput screening.
E-info
https://repository.uantwerpen.be/docman/iruaauth/85cf85/e2228453e57.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304337100009&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304337100009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304337100009&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle