Publication
Title
Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel
Author
Abstract
Diffusive properties of a monodisperse system of interacting particles confined to a quasi-one-dimensional channel are studied using molecular dynamics simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion to the two-dimensional diffusion regime is investigated. This transition [ regarding the calculation of the scaling exponent (alpha) of the MSD proportional to t(alpha)] as a function of the width of the channel is shown to change depending on the channel's confinement profile. In particular, the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.
Language
English
Source (journal)
Physical review : E : statistical, nonlinear, and soft matter physics / American Physical Society. - Melville, N.Y., 2001 - 2015
Publication
Melville, N.Y. : American Physical Society, 2012
ISSN
1539-3755 [print]
1550-2376 [online]
Volume/pages
85:3:1(2012), p. 031147,1-031147,12
Article Reference
031147
ISI
000302117900003
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 14.05.2012
Last edited 11.09.2017
To cite this reference