Publication
Title
First-principles simulation of oxygen diffusion in : role in the resistive switching mechanism
Author
Abstract
Transition metal oxide-based resistor random access memory (RRAM) takes advantage of oxygen-related defects in its principle of operation. Since the change in resistivity of the material is controlled by the oxygen deficiency level, it is of major importance to quantify the kinetics of the oxygen diffusion, key factor for oxide stoichiometry. Ab initio accelerated molecular dynamics techniques are employed to investigate the oxygen diffusivity in amorphous hafnia (HfOx, x = 1.97, 1.0, 0.5). The computed kinetics is in agreement with experimental measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697690]
Language
English
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Publication
New York, N.Y. : American Institute of Physics, 2012
ISSN
0003-6951 [print]
1077-3118 [online]
Volume/pages
100:13(2012), p. 133102,1-133102,4
Article Reference
133102
ISI
000302230800060
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 14.05.2012
Last edited 21.08.2017
To cite this reference