Publication
Title
Electric field gradient calculations in ZnO samples implanted with
Author
Abstract
A first-principles study of the electric field gradient (EFG) calculated for ideal and In-111(Cd-111) implanted ZnO samples is reported in the present work. The study was made for ZnO ideal hexagonal structures and supercells were introduced in order to consider the possible implantation environments. The calculation was done using the "WIEN2k" code within the density functional theory, the exchange and correlation effects were determined by the GGA approximation. Three possible In-111(Cd-111) implantation configurations were studied, one substitutional incorporation at cation site and two interstitials. The obtained EFG values for the ideal structure and the substitutional site are in good agreement with the experimental reports measured by perturbed angular correlation (PAC) and high precision nuclear magnetic resonance (NMR). Thus, the ascription of substitutional incorporation of In-111(Cd-111) probe atom at the ZnO cation site after annealing was confirmed. (C) 2011 Elsevier Ltd. All rights reserved.
Language
English
Source (journal)
Solid state communications. - New York, N.Y.
Publication
New York, N.Y. : 2012
ISSN
0038-1098
Volume/pages
152:5(2012), p. 399-402
ISI
000301329200016
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 14.05.2012
Last edited 31.10.2017
To cite this reference