Publication
Title
Quantitative evaluation of ASiR image quality : an adaptive statistical iterative reconstruction technique
Author
Abstract
Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.
Language
English
Source (journal)
Proceedings of the Society of Photo-optical Instrumentation Engineers / SPIE: International Society for Optical Engineering. - Bellingham, Wash.
Publication
Bellingham, Wash. : SPIE - The International Society for Optical Engineering , 2012
ISSN
0277-786X
DOI
10.1117/12.911283
Volume/pages
8313 (2012) , 5 p.
Article Reference
83133F
ISI
000304768000118
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Quantitative tomographic segmentation of magnetic resonance images
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 14.05.2012
Last edited 09.10.2023
To cite this reference