Title
Analytical capabilities of laboratory, benchtop and handheld X-ray fluorescence systems for detection of metals in aqueous samples pre-concentrated with solid-phase extraction disks Analytical capabilities of laboratory, benchtop and handheld X-ray fluorescence systems for detection of metals in aqueous samples pre-concentrated with solid-phase extraction disks
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Source (journal)
Spectrochimica acta: part B: atomic spectroscopy. - Oxford, 1967, currens
Volume/pages
67(2012) , p. 17-23
ISSN
0584-8547
0038-6987
ISI
000302757200003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We aimed to achieve improved instrumental sensitivity and detection limits for the analysis of several elements (Cu, Ni, Zn, Pb and Cd) in aqueous samples with energy dispersive X-ray fluorescence spectrometry (EDXRF). The metals were pre-concentrated from aqueous solutions using commercially available organic-based solid-phase extraction (SPE) disks functionalized with iminodiacetate groups. These thin-layer organic materials provide an ideal support for XRF analysis. The elements were collected on the SPE extraction disks using a simple filtration procedure (starting with 1 L of aqueous sample) that allows direct XRF measurements to be performed in the field (in situ). We evaluated the analytical possibilities and drawbacks of using this pre-concentration procedure in combination with the following XRF configurations: a handheld unit, a benchtop EDXRF system and a high-energy polarized-beam EDXRF instrument (HE-P-EDXRF). Using the HE-P-EDXRF system, the detection limits for all metals were more than one order of magnitude lower than those attained using handheld and benchtop EDXRF instrumentation. For the detection of metal concentrations higher than similar to 20 mu g/L, however, handheld or benchtop systems remain a very good option due to their extreme simplicity of operation and low-cost, compact design. We demonstrate the application of these methodologies, using the three equipment systems, to the analysis of trace concentrations of metals in different types of aqueous samples, including tap water and waste water. (C) 2011 Elsevier B.V. All rights reserved.
E-info
https://repository.uantwerpen.be/docman/iruaauth/583925/8ba1733.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302757200003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302757200003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302757200003&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle