The impact of -fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer
Purpose: 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) combined with computer tomography (PET-CT) is superior to CT alone in mediastinal lymph node (LN) staging in non-small cell lung cancer (NSCLC). We studied the potential impact of this non-invasive LN staging procedure on the radiation treatment plan of patients with NSCLC. Patients and methods: The imaging and surgical pathology data from 105 patients included in two previously published prospective LN staging protocols form the basis for the present analysis. For 73 of these patients, with positive LN's on CT and/or on PET, a theoretical study was performed in which for each patient the gross tumour volume (GTV) was defined based on CT and on PET-CT data. For each GTV, the completeness of tumour coverage was assessed, using the available surgical pathology data as gold standard. A more detailed analysis was done for the first ten consecutive patients in whom the PET-CT-GTV was smaller than the CT-GTV. Theoretical radiation treatment plans were constructed based on both CT-GTV and PET-CT-GTV. Dose-volume histograms for the planning target volume (PTV), for the total lung volume and the lung volume receiving more than 20 Gy (Vlung(20)), were calculated. Results: Data from 988 assessed LN stations were available. In the subgroup of 73 patients with CT or PET positive LN's, tumour coverage improved from 75% when the CT-GTV was used to 89% with the PET-CT-GTV (P=0.005). In 45 patients (62%) the information obtained from PET would have led to a change of the treatment volumes. For the ten patients in the dosimetry study, the use of PET-CT to define the GTV, resulted in an average reduction of the PTV by 29±18% (±1 SD) (P=0.002) and of the Vlung(20) of 27±18% (±1 SD) (P=0.001). Conclusion: In patients with NSCLC considered for curative radiation treatment, assessment of locoregional LN tumour extension by PET will improve tumour coverage, and in selected patients, will reduce the volume of normal tissues irradiated, and thus toxicity. This subgroup of patients could then become candidates for treatment intensification.
Source (journal)
Radiotherapy and oncology. - Amsterdam
Amsterdam : 2000
55:3(2000), p. 317-324
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
Publication type
External links
Web of Science
Creation 18.06.2012
Last edited 14.06.2017