Publication
Title
The current status of FDGPET in tumour volume definition in radiotherapy treatment planning
Author
Abstract
Positron emission tomography (PET) scan, mainly using 18 F-fluoro-deoxyglucose (FDG) as a tracer, is currently widely accepted as a diagnostic tool in oncology. It may lead to a change in staging and therefore in treatment management. PET can also be used to define the target volume in radiation treatment planning and to evaluate treatment response. In this review, we focused on issues concerning the role of PET in target volume delineation, both for the primary tumour and regional lymph nodes. A literature search was performed using MEDLINE. Furthermore, the following questions were addressed: does PET allow accurate tumour delineation and does it improve the outcome of radiotherapy, in terms of reduced toxicity or a higher tumour control probability? Combined computer tomography (CT) and PET information seems to influence target volume delineation. Using (CT-) PET scan, interobserver variability is being reduced. Only few studies compared delineation based on PET with pathologic examination, showing a complex relation. Preliminary results concerning incorporation of PET information in to target volume delineation varies in different tumour sites. In the field of lung cancer, incorporation of PET seems to improve tumour coverage and spare normal tissues, which may lead to less toxicity or the possibility to escalate dose. In oesophageal cancer and in lymphoma, PET scan can be used to include PET positive lymph nodes in the target volume. In most other tumour sites not enough data are currently available to draw definitive conclusions about the role of PET in radiation treatment planning.
Language
English
Source (journal)
Cancer treatment reviews. - London
Publication
London : 2006
ISSN
0305-7372
Volume/pages
32:4(2006), p. 245-260
ISI
000238631000002
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 18.06.2012
Last edited 01.11.2017