Publication
Title
Artificial construction of the layered Ruddlesden-Popper manganite by reflection high energy electron diffraction monitored pulsed laser deposition
Author
Abstract
Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1-xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T-g approximate to 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.
Language
English
Source (journal)
Journal of the American Chemical Society. - Washington, D.C., 1879, currens
Publication
Washington, D.C. : American Chemical Society , 2012
ISSN
0002-7863
DOI
10.1021/JA211138X
Volume/pages
134 :18 (2012) , p. 7700-7714
ISI
000303696200029
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Counting Atoms in Nanomaterials (COUNTATOMS).
RLUCIM: Resilient large unit cell inorganic materials
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.07.2012
Last edited 09.10.2023
To cite this reference