Publication
Title
Partially unzipped carbon nanotubes as magnetic field sensors
Author
Abstract
The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]
Language
English
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Publication
New York, N.Y. : American Institute of Physics , 2012
ISSN
0003-6951 [print]
1077-3118 [online]
DOI
10.1063/1.4726039
Volume/pages
100 :23 (2012) , p. 232104,1-232104,3
Article Reference
232104
ISI
000305089900038
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.07.2012
Last edited 09.10.2023
To cite this reference