Title
A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Subject
Computer. Automation
Source (journal)
EURASIP journal on wireless communications and networking
Volume/pages
(2012) , p. 1-30
ISSN
1687-1499
Article Reference
114
ISI
000305223100001
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
In the railway industry, there are nowadays different actors who would like to send or receive data from the wayside to an onboard device or vice versa. These actors are e.g., the Train Operation Company, the Train Constructing Company, a Content Provider, etc. This requires a communication module on each train and at the wayside. These modules interact with each other over heterogeneous wireless links. This system is referred to as the Train-to-Wayside Communication System (TWCS). While there are already a lot of deployments using a TWCS, the implementation of quality of service, performance enhancing proxies (PEP) and the network mobility functions have not yet been fully integrated in TWCS systems. Therefore, we propose a novel and modular IPv6-enabled TWCS architecture in this article. It jointly tackles these functions and considers their mutual dependencies and relationships. DiffServ is used to differentiate between service classes and priorities. Virtual local area networks are used to differentiate between different service level agreements. In the PEP, we propose to use a distributed TCP accelerator to optimize bandwidth usage. Concerning network mobility, we propose to use the SCTP protocol (with Dynamic Address Reconfiguration and PR-SCTP extensions) to create a tunnel per wireless link, in order to support the reliable transmission of data between the accelerators. We have analyzed different design choices, pinpointed the main implementation challenges and identified candidate solutions for the different modules in the TWCS system. As such, we present an elaborated framework that can be used for prototyping a fully featured TWCS.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/2e3c6c/4393.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305223100001&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305223100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305223100001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle