Title
Stretched chemical bonds in Si6H6: a transition from ring currents to localized pi-electrons?
Author
Publication type
article
Publication
Amsterdam ,
Subject
Physics
Chemistry
Source (journal)
Chemical physics. - Amsterdam
Volume/pages
297(2004) :1-3 , p. 13-19
ISSN
0301-0104
ISI
000188647500003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
Motivated by solid-state studies on the cleavage force in Si, and the consequent stretching of chemical bonds, we here study bond stretching in the, as yet unsynthesized, free space molecule Si6H6. We address the question as to whether substantial bond stretching (but constrained to uniform scaling on all bonds) can result in a transition from ring current behaviour, characteristic say of benzene at its equilibrium geometry, to localized pi-electrons on Si atoms. Some calculations are also recorded on dissociation into 6 SiH radicals. While the main studies have been carried out by unrestricted Hartree-Fock (HF) theory, the influence of electron correlation has been examined using two forms of density functional theory. Planar Si6H6 treated by HF is bound to be unstable, not all vibrational frequencies being real. Some buckling is then allowed, which results in real frequencies and stability. Evidence is then provided that the non-planar structure, as the Si-Si distance is increased, exhibits pi-electron localization in the range 1.2-1.5 times the equilibrium distance. (C) 2003 Elsevier B.V. All rights reserved.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000188647500003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000188647500003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000188647500003&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848