Title
Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
New York, N.Y. ,
Subject
Physics
Source (journal)
Physical review letters. - New York, N.Y.
Volume/pages
113(2014) :16 , 5 p.
ISSN
0031-9007
0031-9007
Article Reference
165304
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a 2D Fermi gas with spin-orbit coupling (SOC), as a function of the two-body binding energy and a perpendicular Zeeman field. By including a generic form of the SOC, as a function of Rashba and Dresselhaus terms, we study the evolution between the experimentally relevant equal Rashba-Dresselhaus (ERD) case and the Rashba-only (RO) case. We show that in the ERD case, at a fixed nonzero Zeeman field, the BKT transition temperature TBKT is increased by the presence of SOC for all values of the binding energy. We also find a significant increase in the value of the Clogston limit compared to the case without SOC. Furthermore, we demonstrate that the superfluid density tensor becomes anisotropic (except in the RO case), leading to an anisotropic phase-fluctuation action that describes elliptic vortices and antivortices, which become circular in the RO limit. This deformation constitutes an important experimental signature for superfluidity in a 2D Fermi gas with ERD SOC. Finally, we show that the anisotropic sound velocities exhibit anomalies at low temperatures, in the vicinity of quantum phase transitions between topologically distinct uniform superfluid phases.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/7ca388/7a71b59a.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344033600005&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344033600005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344033600005&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle